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Abstract 
A famous mathematical theorem says that the sum of an infinite series of numbers 
can depend on the order in which those numbers occur. Suppose we interpret the 
numbers in such a series as representing instances of some physical quantity, such 
as the weights of a collection of items. The mathematics seems to lead to the result 
that the weight of a collection of items can depend on the order in which those 
items are weighed. But that is very hard to believe! A puzzle then arises: How do 
we interpret the metaphysical significance of this mathematical theorem? I first 
argue that prior solutions to the puzzle lead to implausible consequences. Then I 
develop my own solution, where the basic idea is that the weight of a collection of 
items is equal to the limit of the weights of its finite subcollections contained within 
ever-expanding regions of space. I show how my solution is intuitively plausible 
and philosophically motivated, how it reveals an underexplored line of metaphys-
ical inquiry about quantities and locations, and how it elucidates some classic puz-
zles concerning supertasks. 
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conditionally convergent series, quantities, locations, Riemann’s Rearrangement Theorem, 
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§1 A Puzzle 
Let’s start with a principle that initially seems unremarkable, yet that turns 
out to be puzzling: 
 

SUM 
For any collection of items, the weight of the collection equals the 
sum of the weights of the items within that collection.1 
 

If the collection contains only finitely many items, then SUM is indeed rather 
boring. But if the collection is infinite, then a puzzle arises. The puzzle 
doesn’t cast doubt on the truth of SUM. Instead, it raises questions about 
how to interpret the principle in the first place. As a prelude, consider the 
following thought-experiment (call it Infinite Scale) from Linnebo [2020: 1]: 

 
Infinite Scale 
Suppose you have a scale that is capable of weighing infinitely many items 
and an infinite amount of weight. Suppose also that you have an infinite 
number of iron balls and an infinite number of balloons. The first ball 
weighs 1 kg, the second ball weighs !

"
 kg, the third ball weighs !

#
 kg, and so 

forth. The first balloon lifts !
$
 kg, the second balloon lifts !

%
 kg, the third bal-

loon lifts !
&
 kg, and so forth. Now, suppose you first place the 1 kg ball on 

the scale, then attach the − !
$
 kg balloon, then add the !

"
 kg ball, then attach 

the − !
%
 kg balloon, and so forth. This infinite sequence of actions results in 

an infinite progression of weights and counterweights added to the scale. 
What is the weight of the scale once every item has been added?2 

 
1 Are collections sets? Well, sets are abstract objects, and abstract objects don’t weigh any-
thing. It may be better to think of collections as fusions or pluralities. 
2 Strictly speaking, weight is measured in kgf (kilograms-force), rather than kg (which is a 
unit of mass), so even a balloon wouldn’t have negative weight (but instead would have 
buoyancy that counteracts the effect of weight on a scale). But since the paper that origi-
nally introduced this puzzle was framed in terms of weight, I’ll set aside these points and 
continue to use weight as the target quantity in this paper. For a more carefully developed 
scenario involving a physical manifestation of a conditionally convergent series (though in 
a classical mechanics setting) involving charge, see Alexander [forthcoming]. 
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To figure out the answer to the question, we need to sum the weights of all 
the individual items. The scale starts with nothing on it, so we start at 0. 
Then we add 1 (for the first ball), then subtract !

"
 (for the first balloon), then 

add !
#
 , then subtract !

$
 , and so on. This infinite sequence of actions is mod-

eled by the following infinite series, which is sometimes called the ‘alter-
nating harmonic series’: 

 
The Alternating Harmonic Series 

1 −
1
2 +

1
3 −

1
4 +

1
5 −

1
6… =	-

(−1)%

𝑛 + 1

&

%'(

= 𝑙𝑛(2) ≈ 0.69. 

  
The equation says that when we sum the sequence of numbers on the left, 
the result will gradually converge to ln(2), which is approximately 0.69. 
Therefore, it seems reasonable to conclude that the weight on the scale at 
the end of the procedure is ~.69kg. But the puzzle arises when we ask the 
following question: what if we were to rearrange the items in the series? 

A surprising result from mathematics is that merely rearranging the 
order of the terms in a series can result in convergence to a different sum. 
In other words, the sum of an infinite series sometimes depends on the or-
der of its terms. In fact, an astonishing result is that by rearranging terms, 
we can make a series sum to any arbitrary real number, or even tend to-
wards positive or negative infinity. This is known as “Riemann’s Rear-
rangement Theorem,” after its discovery by the 19th-century mathemati-
cian Bernhard Riemann.3 Here’s a statement of the theorem: 
 

Riemann’s Rearrangement Theorem 
If an infinite series is conditionally convergent, then its terms can be re-
arranged so that the new series converges to an arbitrary number, or 
diverges. 

 

 
3 Riemann [1876]. 
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An infinite series converges =def the sum of its terms grows arbitrarily close 
to some finite number as the series progresses; otherwise, the infinite series 
diverges. An infinite series conditionally converges =def it converges but the se-
ries consisting of the absolute values of all its terms diverges. 

The alternating harmonic series described above is an example of a 
conditionally convergent series: it sums to ln(2), but if we rearrange its 
terms, we can generate a different sum. To do so, we take terms from the 
original series until the sum reaches the number we want to converge on, 
and then alternate between positive and negative terms from the original 
series so that the rearranged series converges to the desired limit. For the 
purposes of this paper, it isn’t necessary to go deeper into the mathematical 
reasoning behind Riemann’s Rearrangement Theorem, though interested 
readers may refer to the APPENDIX. 

The mathematical result is secure. The philosophical puzzle is how 
to interpret the metaphysical significance of that result. It’s surprising that 
the sum of an infinite series depends on the order of its terms, but that may 
be regarded merely as a mathematical curiosity. What’s much harder to be-
lieve is that the weight of a collection of items can depend on the order in 
which those items are weighed. Order of weighing seems a mere matter of 
convention, rather than an actual matter of metaphysics. And there’s noth-
ing special about weight: as I’ll discuss later, analogous puzzles arise with 
any quantity that satisfies certain formal conditions. So, we have a meta-
physical puzzle. Let’s call it the puzzle of conditional convergence. 

 The aims of this paper are to (1) explain why existing solutions to 
the puzzle are unsatisfactory, (2) develop a new solution, (3) support my 
solution by investigating an underexplored collection of metaphysical 
questions about quantities and locations, and (4) apply my results to some 
existing puzzles about supertasks. As we will see, the puzzle of conditional 
convergence isn’t merely an isolated technical problem. Instead, the solu-
tion to the puzzle has much more general ramifications, yielding new lines 
of metaphysical inquiry and new tools for solving classic problems.  

As for the puzzle itself, I’ll argue that Riemann’s Rearrangement 
Theorem indeed has interesting metaphysical implications. But it will take 
some work to uncover the exact nature of those implications. To solve the 
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puzzle, we will need to consider the relationship between summation over 
individuals and summation over locations. Once we do so, the following 
solution will come to light: the weight of a collection of items (whether finite 
or infinite) is equal to the limit value of the weights of the finite subcollec-
tions contained within ever-expanding regions of space. The initial state-
ment of this solution may feel a bit complex. But I’ll argue over the course 
of the paper that the solution is intuitively plausible, philosophically moti-
vated, and explanatorily fruitful. 
 The puzzle of conditional convergence doesn’t require one to think 
of infinite scale scenarios as metaphysically possible. In fact, given the con-
nections between weight, mass, and gravitational fields, I myself doubt that 
the infinite scale scenario described above is metaphysically impossible. In-
stead, think of the thought-experiments as illustrative tools that allow us to 
more vividly assess some general questions concerning quantities, objects, 
and locations. As analogies, consider the roles that scenarios like Hilbert’s 
Hotel, philosophical zombies, and Cartesian demons play in discussions of 
infinity, consciousness, and knowledge.4 

The solution I develop will have implications for all quantities, even 
those that cannot generate puzzles of conditional convergence. And while 
the prime example in this paper will be weight (and space), the view I favor 
will generalize to quantities beyond weight (and locations beyond spatial 
regions). The aim of this paper is to not only develop a solution to the initial 
puzzle, but to use that puzzle to motivate some bigger ideas about the met-
aphysical relationships between quantities and locations. Furthermore, I’ll 
explain how pursuing this line of inquiry yields explanatory payoffs for 
some classic puzzles about supertasks, such as the Ross-Littlewood Para-
dox and Thomson’s Lamp. 

Here’s the structure of the paper: §2 argues against prior solutions to 
the puzzle, developed by Linnebo [2020] and Hoek [2021]; §3 presents my 
view, which I call the ‘expansionist analysis’; §4 supports the expansionist 

 
4 Even if infinite scales are metaphysically impossible, infinite sums of quantities may nev-
ertheless be possible (or even actual). At least, it’s an open possibility that the actual world 
contains infinitely many instances of some physical quantities. 
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analysis by exploring some general questions about quantities and loca-
tions; and §5 applies the expansionist analysis to some puzzles about su-
pertasks. 
 
§2 The Order-Relative and Balance Analyses 
Two solutions to the puzzle of conditional convergence already exist. The 
first, developed by Øystein Linnebo, is what I’ll call the order-relative analy-
sis: the weight of a collection depends on the order in which the individual 
items are weighed. The second solution, developed by Daniel Hoek, is what 
I’ll call the balance analysis: the weight of a collection is zero whenever it 
contains both infinite positive weight and infinite negative weight. I’ll argue 
that neither solution is satisfactory. 

 
The Order-Relative Analysis 
Since the puzzle was introduced by Linnebo [2020], it’s fitting to start with 
his solution. Linnebo’s view, in effect, is that we ought to take Riemann’s 
Rearrangement Theorem at face value. According to his order-relative anal-
ysis, the weight of a collection of items depends on the order in which the 
individual items are weighed. The order-relative analysis predicts that in 
the scenario described above, the weight is approximately .69kg. But the 
order-relative analysis also holds that if the items were placed on the scale 
in a different order, then the result would be different. 

The order-relative analysis is the most straightforward interpreta-
tion of the mathematical results. But the solution feels unsatisfying: it’s very 
hard to believe that the order in which individual items are put on a scale 
can make a difference to the weight of the collection. In fact, we might won-
der how weight works when our method of weighing doesn’t involve any 
physical intervention on the items that are weighed. Suppose, for example, 
that we already know the weights of the individual items, the items are al-
ready lying on the ground, and we calculate the weight of the collection by 
inputting the weights of the items into a calculator. It’s implausible that the 
weight of the collection depends on the order in which we enter numbers 
into the calculator. And if you and I were to enter the weights of the items 
in different orders, would that mean that the collection would then have 
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multiple weight values? The reason these consequences feel absurd is be-
cause weight isn’t a matter of mere bookkeeping; it’s an objective physical 
quantity. The solution I develop will preserve the order-invariance of 
weight (and other quantities). 
 To poke more at the order-relative analysis, let’s consider a variant 
on Infinite Scale. The variant invokes an application of Riemann’s Rear-
rangement Theorem. Recall that the weights of the items in Infinite Scale 
were mathematically represented by the alternating harmonic series. Since 
that series is conditionally convergent, there’s a rearrangement that di-
verges to ∞. Here’s a procedure for achieving that result. We first separate 
the positive terms (which I’ll label the pi’s) from the negative terms (which 
I’ll label the ni’s). To construct the new series, we start with the first positive 
term p1 (which is 1), followed by the first negative term n1, followed by pos-
itive terms p2, p3, …, pj until the sum is approximately 2, followed by the 
second negative term n2, followed by positive terms pj+1, pj+2, …, pk until the 
sum is approximately 3, and so forth. The result is a rearrangement of the 
alternating harmonic series with the following structure: 
 

The Divergent Rearrangement 

p1 + (n1 + p2 + … + pj) + (n2 + pj+1 + … pk) + … = 1 + ~1 + ~1 + … = ∞ 

 
Now we can construct a variant on Infinite Scale: 
 

——— 
Clustered Items 
——— 
Items:  The same collection of items as in Infinite Scale. 
Setup: The temporal order in which the items are placed corresponds to 

the alternating harmonic series (so the same as in Infinite Scale). 
But the spatial arrangement of the items corresponds to the diver-
gent rearrangement (so an iron ball, followed by a balloon, fol-
lowed by many iron balls, followed by a second balloon, followed 
by many, many iron balls, and so forth). 
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Clustered Items and Infinite Scale are indistinguishable with respect to both 
(1) the items that comprise the collection, and (2) the order in which the 
items are placed on the scale. They differ only with respect to (3) the spatial 
arrangement of those items. In Clustered Items, the iron balls are clustered 
together, and the balloons become sparse at an exponential rate; in Infinite 
Scale, every iron ball is adjacent to two balloons, and every balloon is adja-
cent to two iron balls. The order-relative analysis predicts that the weights 
of the collections are the same: namely, ln(2). But while that result is plau-
sible for Infinite Scale, it’s not at all obvious for Clustered Items. In fact, a nat-
ural answer for Clustered Items is that the weight is ∞.5 That’s the answer I’ll 
eventually endorse. But my present point is modest: I’m simply claiming 
that it’s not clear that we should assign Clustered Items and Infinite Scale the 
same weight value. 

There’s another clever argument against the order-relative analysis 
that comes from Hoek [2021]. Suppose we start with all the items already 
placed on the infinite scale, and then remove them—as follows—until the 
scale is empty: 

 
——— 
Emptied Scale 
——— 
Items:  The same collection of items as in Infinite Scale. 
Setup: We start at the end-state of Infinite Scale, where all items have al-

ready been placed and where (per the order-relative analysis) the 
resulting weight is .69kg. Then we remove the items as follows: 
first the 1kg ball and the !

"
 kg ball, then the − !

$
 kg balloon, then the 

!
#
 kg and the !

'
 kg ball, then the − !

%
 kg balloon, and so forth until all 

items have been removed from the scale. 
 

 
5 Throughout the paper, I’ll treat ∞ as a possible weight value, but I’ll leave open how ex-
actly that is to be interpreted. If ∞ is treated as a number, then interesting questions arise 
about which trans-finite number system to deploy, but I won’t discuss that here. See 
Easwaran et al [2021: §3] for discussion of related issues. 
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As Hoek notes, the natural generalization of the order-relative analysis will 
entail that the weight after all the items have been removed is a negative 
number. But that’s absurd, since at the end of the procedure there’s nothing 
on the scale. This strikes me as strong reason to reject the order-relative 
analysis. 
 
The Balance Analysis 
According to Hoek [2021], the weight of the collection in Infinite Scale is 0. 
He appeals to the following principle: 

 
BALANCE 
If equal weights and counterweights lie on a scale, then the scale is 
in the same state as when it holds no weights. 

 
Call this view the balance analysis. The basic idea is that for any collection of 
items, we can partition it into two equivalence classes, one containing the 
positively weighted items and the other containing the negatively weighted 
items. If the sum of the positive weights is equal to the inverse of the sum 
of the negative weights, then the weight of the whole collection is 0. To mo-
tivate the balance analysis, Hoek reinterprets the infinite scale (where the 
counterweights are balloons) as an infinite balance (where the weights are 
on the left side and the counterweights are on the right side). Here’s the 
relevant passage, from Hoek [2021: 2]: 
 

Infinite Balance 
Imagine an infinite stock of brass weights of 1kg, !

"
 kg, !

#
 kg, and so on; and 

an infinite stock of counterweights of !
$
 kg, !

%
 kg, !

&
 kg, and so on. At 1pm, we 

begin alternatively placing a weight on the left of our indestructible bal-
ance, and a counterweight on the right. We start with the biggest weights 
and work our way down...We speed up the steps as we go, so that at 2pm 
exactly, all steps have been performed. Which way will the balance lean 
after 2pm? 
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Here's the idea. Since both the left side and the right side of the balance 
contain an infinite amount of weight, it seems plausible that the balance will 
be in equilibrium. But Infinite Balance seems to be merely a redescription of 
Infinite Scale. Therefore, if Infinite Balance is in equilibrium, then we ought 
to think that Infinite Scale outputs 0kg. Here’s that argument in premise-
conclusion form: 
 

The Balance Argument 
P1: Infinite Balance is in equilibrium. 
P2: If Infinite Balance is in equilibrium, then the weight in Infinite 

Scale is 0. 
— 
C: The weight in Infinite Scale is 0. 

 
Hoek [2021] focuses mainly on defending P1. This is because the order-rel-
ative analysis denies P1. Or, more precisely, it’s in the spirit of the order-
relative analysis to accept that it’s possible for Infinite Balance to lean in one 
direction or the other (rather than to be in equilibrium), depending on the 
order in which the individual items are weighed. To defend P1, Hoek ar-
gues against the following principle, which he thinks of as the underlying 
motivation behind the order-relative analysis: 
 

CONTINUITY 
If a quantity converges to a limit x over time interval [t0, t1), then the 
quantity attains value x at t1.6 

 
I won’t argue against P1—I’ll grant that Infinite Balance is in equilibrium. In 
fact, I agree with Hoek that CONTINUITY doesn’t hold in all cases, and in §5 
I’ll provide a diagnosis of when CONTINUITY works and when it doesn’t. In-
stead, I want to contest P2. On my view, Infinite Balance isn’t merely an in-
nocuous reinterpretation of Infinite Scale. The scenarios differ in ways that 

 
6 Principles of continuity—and in particular, extensions from finite to infinitary cases—are 
often attributed to Leibniz. See Jorgensen [2009]. 



A PUZZLE ABOUT SUMS 
 
 
 

 

10 

matter for how we assess the results for each case. As an initial challenge to 
the balance analysis, consider the following principle:7 

 
FINITE ADDITIVITY 
If a and b both have finite weight values, then the weight of a and b 
equals the weight of a plus the weight of b. 
 

The balance analysis must deny FINITE ADDITIVITY. Let a be the collection of 
items in Infinite Scale, which the balance analysis says weighs 0, and let b be 
an additional iron ball that weighs 1. Given FINITE ADDITIVITY, the weight of 
a and b should be 1. But the balance analysis instead predicts that the weight 
of a and b is 0. In fact, this holds no matter how much the additional item 
weighs, and no matter how many additional items we add. I don’t take this 
consideration to be decisive; unexpected results often occur when dealing 
with the infinite. But I think the violation of FINITE ADDITIVITY is at least a 
strike against the balance analysis, especially since the mathematical ana-
logue of FINITE ADDITIVITY holds even for conditionally convergent series. 

Here's another challenge to the balance analysis: 
 

——— 
Heavy Items 
——— 
Items:  An infinite number of elephants, each of which weighs 5000kg. 

An infinite number of balloons, each of which lifts 0.01kg. 
Setup: An elephant is placed on the scale, then a balloon is attached to 

that elephant, then a second elephant is placed on the scale, then 
a second balloon is attached to that second elephant, and so on. 

 
Suppose we apply the balance analysis to Heavy Items. First, we partition 
the weights (the elephants) from the counterweights (the balloons). Then, 
we place all the elephants on one side of an infinite balance. Since balloons 
have negative weights, we need to find a kind of item for the other side of 
the balance whose positive weights exactly balance the negative weights of 

 
7 Assume a and b don’t overlap—I’ll briefly discuss overlapping objects later, in §4. 
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balloons. Well, it’s common knowledge that a standard helium balloon lifts 
approximately the weight of a slice of cheese. So, imagine that we replace 
each balloon with a slice of cheese, and then put all that cheese on the other 
side of the balance. Although one side contains elephants and the other side 
contains cheese, one might still conclude that the balance will be in equilib-
rium (since both sides contain an infinite amount of weight). But it’s im-
plausible that the weight in Heavy Items is 0: instead, it's much more plausi-
ble that the weight is ∞. Therefore, even if we assume that Infinite Balance is 
in equilibrium, we ought not thereby infer that Infinite Scale outputs 0. 
 A proponent of the balance analysis might contend that our finite 
imaginative capacities are leading us astray. Just because any finite number 
of elephants and balloons has a positive weight doesn’t mean that an infi-
nite number of elephants and balloons likewise has a positive weight. As an 
analogy, consider the intuition that there are fewer prime numbers than in-
tegers (when, in fact, both sets have the same cardinality). However, this 
error-theoretic explanation is unlikely to be an apt diagnosis of the present 
case. Any finite number of elephants would outweigh the same number of 
slices of cheese—yet I granted above that an infinite number of elephants 
may very well weigh the same as an infinite number of slices of cheese. This 
is evidence that the intuition behind Heavy Items is sensitive to the afore-
mentioned asymmetries between finitary versus infinitary cases. 

Besides, the argument can be strengthened. Here’s a variant on 
Heavy Items that yields an especially forceful argument against the balance 
analysis: 

 
——— 
Hungry Items 
——— 
Items:  An infinite number of elephants, each of which weighs 5000kg. 

An infinite number of balloons, each of which lifts 0.01kg. 
Setup: An elephant is placed on the scale, then a balloon is fed to that 

elephant, then a second elephant is placed on the scale, then a sec-
ond balloon is fed to that second elephant, and so on. Fortunately, 
the elephants have large gullets and flexible stomachs, so each 
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balloon is swallowed whole by its elephant and remains inflated 
once inside its elephant’s stomach. 

 
The only difference between Heavy Items and Hungry Items is the relative 
locations of the elephants and balloons. In Heavy Items, the balloons are 
floating above the elephants; in Hungry Items, the balloons are inside the 
elephants. Unless we have independent reason for thinking that this change 
is relevant to the weights of the collections, we ought to treat Heavy Items 
and Hungry Items with parity. But surely the weight in Hungry Items is ∞. 
So, we ought to think that the weight in Heavy Items is likewise ∞. This in-
dicates that we ought to reject BALANCE (and, by consequence, the balance 
analysis). 

We can now appreciate a more general problem for both the order-
relative and balance analyses. Both solutions tacitly assume that we already 
know how to individuate the relevant items. However, when dealing with 
scenarios such as Hungry Items, it’s unobvious how to do that. Should we 
count the balloons as separate from the elephants, or should each elephant 
(with a balloon inside) count as a single item? How we answer such ques-
tions will generate predictive differences for both the order-relative and bal-
ance analyses. Yet there seem to be no non-arbitrary answers. And we can-
not simply permit any method of individuation whatsoever, since doing so 
would lead to contradiction. 
 We have now evaluated two solutions to the puzzle. Both initially 
appeared promising, but both turned out to be vulnerable to compelling 
counterarguments. Let’s now turn to the solution I favor. 
 
§3 The Expansionist Analysis 
Here’s the basic idea behind my view. To solve the puzzle of conditional 
convergence, we need to know not only the weights of the individual items, 
but also their spatial arrangement. More precisely, we need to know 
whether the finite subcollections of items contained within ever-expanding 
regions of space always converge to the same weight value. If so, then that’s 
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the weight of the collection. Otherwise, the collection’s weight is either in-
finite or undefined. I’ll call this the expansionist analysis.8 

The present section will focus mainly on explaining how the expan-
sionist analysis works. But the full story—including the explanation for 
why weight and space are connected—will be developed also in §4, where 
I explore some general metaphysical questions about quantities and loca-
tions. Some of the discussion in this section will be a bit technical—for those 
less interested in that kind of stuff, it’s possible to skim the technical details 
while still grasping the core ideas. 
  
Definitions 
Let a ball be the set of spatial points that lie within a given distance from 
some center.9 To denote balls, I’ll use the notation ‘B(p, d)’, where p is the 
ball’s center and d is the ball’s radius. For any collection A and ball B(p, d), 
we can identify the subcollection of A that lies inside B(p, d).10 To denote this 
subcollection, I’ll use the notation ‘A|B(p, d)’. If no items of A lie inside B(p, 
d), then A|B(p, d) = ∅; if every item of A lies inside B(p, d)), then A|B(p, d) = A. 

 
8 In the infinite ethics literature, there’s a prominent view called ‘expansionism’ (for some 
discussions, see Vallentyne & Kagan [1997], Bostrom [2011], and Wilkinson [2020]). My 
view is similar in spirit, and my expansionist analysis is in some ways inspired by ideas 
from that literature. But it’s important to appreciate that the target issues are distinct (even 
when we set aside the superficial difference concerning whether value or weight is the 
target quantity). The core difference is that expansionist theories in infinite ethics aim to 
yield comparisons between worlds with infinite total values, whereas my concern is with 
non-comparative evaluations of infinitary collections of items that sum to finite total values. 
Because of this, the main question of this paper is logically orthogonal to the main question 
examined in the infinite ethics literature. Still, my view is a natural complement to expan-
sionist theories in infinite ethics. Moreover, some of my later arguments (especially in §4) 
might be taken to indirectly support those theories. 
9 It doesn’t matter whether the ball is open (excluding its boundary points) or closed (con-
taining its boundary points). 
10 What does it mean for an item a to be inside a region of space? Well, the answer doesn’t 
matter. We can choose either (1) a is wholly inside the region, or (2) a is partially inside the 
region, or (3) a is mostly inside the region. Any of these choices will yield the same results 
(at least so long as the items are each finite in both weight and extent). 
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Let ω be a function whose input is a finite collection of items and 
whose output is the weight of that collection. Hence, ω(A|B(p, d)) is the 
weight of the finite subcollection of A that lies within the spatial ball with 
center p and radius d. For simplicity, I’ll assume that any finite region of 
space contains only a finite number of weighted items (in §5, I’ll discuss 
some cases where infinitely many items are in a finite region). Since we 
know how to calculate the weights of finite collections, and since any ball 
B(p, d) is finite, there will always be a straightforward answer as to the value 
of ω(A|B(p, d)). 
 
Procedure 
The expansionist analysis says that the weight of collection A is x iff the 
weights of A’s subcollections contained inside ever-expanding balls always 
converge to x, no matter which spatial point those balls are centered on. 
More precisely, ω(A) = x iff for all spatial points p, ω(A|B(p, d)) approaches 
the limit x as d tends to ∞. 
 Here’s a procedure for determining whether that condition is satis-
fied. We start by picking an arbitrary spatial point p and an arbitrary dis-
tance d. These two values determine a ball B(p, d)—the ball with center p and 
radius d. This in turn determines a set of items A|B(p, d)—the subcollection 
of A that lies within B(p, d). Then we ask: what happens to ω(A|B(p, d)) as 
the ball grows larger? 

To answer this, we define a sequence of balls that satisfies the fol-
lowing conditions: (1) every ball has the same center (namely, p), (2) every 
subsequent ball has a radius larger than the preceding ball, and (3) for every 
distance di, there’s a ball in the sequence with radius dn such that dn > di. Put 
another way, the sequence of balls will be (B(p, d1), B(p, d2), B(p, d3), …). The 
first term denotes the ball with center p and radius d1, the second term de-
notes the ball with center p and radius d2, and so forth. Hence, we have a 
sequence of ever-expanding balls, each centered on the point p. 

We then use this sequence of balls to define a corresponding se-
quence of weights: in particular, the sequence (ω(A|B(p, d1)), ω(A|B(p, d2)), 
ω(A|B(p, d3)), …). Here the first term denotes the weight of the subcollection 
of A that lies inside the ball with center p and radius d1, the second term 
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denotes the weight of the subcollection of A that lies inside the ball with 
center p and radius d2, and so forth. Hence, we now have a sequence of the 
weights of the subcollections of A contained inside the sequence of ever-
expanding balls (anchored on some center). 

What we have defined so far is illustrated in the diagram below: 
 

 
 

FIGURE 1: The weights of finite subcollections of A contained within ever-expanding spatial balls. 

 
Let’s call any sequence of weights derived through this kind of procedure 
an ω-sequence.11 The ω-sequence illustrated by the diagram above is (1kg, 
!
"

kg,	)
*

kg, …). 

For any collection A, we can generate a set of ω-sequences. For sim-
plicity, let’s suppose the distance intervals are always fixed (this won’t 
make a difference in the end). Then the ω-sequences for any given collection 

will be individuated by which spatial point p marks the center of the balls. 
In other words, for any collection A, there will be exactly one ω-sequence 
for every spatial point p. Now, for any ω-sequence, we can ask whether it 
approaches some limit x, meaning that the terms in the sequence get 

 
11 Note that ‘ω-sequence’ is usually used to denote sequences that have the ordering of the 
natural numbers. So, ω-sequences in the sense I’ve defined can be thought of as specific 
instances of ω-sequences in this more general sense. 

p

d1

ω(A|B(p, d1) = 1kg

B(p, d1)
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arbitrarily close to x as the sequence progresses. In other words, as the balls 
grow arbitrarily large, the weights of the subcollections of A within the balls 
become arbitrarily close to x. 

Now I can state the core claim of the expansionist analysis. If every 
ω-sequence for A approaches the limit x, then the weight of A is x. If not, 
then the weight of A is either ±∞ or undefined. For the moment, I’ll assume 
that every item in A is eventually captured by the ω-sequence (meaning that 
every item will eventually be contained within the ever-expanding se-
quence of balls). I’ll later explain how to deal with cases where we drop that 
assumption. 
 
The Expansionist Analysis 
The expansionist analysis can be elegantly expressed with an equation (as 
reminders, A is a collection of items, x is a real number, and ω(A|B(p, d)) is 
the weight of the subcollection of A that lies within the ball that has center p 
and radius d): 
 
 The Expansionist Analysis 

A weighs x ≡ ∀p 𝑙𝑖𝑚
+	→	&

ω(A|B(p, d)) = x 

 
The analysis says that the weight of a collection A is x iff for every spatial 
point, if we consider an ever-expanding sequence of balls centered on that 
point, then the weights of the finite subcollections of A contained with those 
balls will approach x. That’s equivalent to saying all of A’s ω-sequences ap-
proach x.  

To make sure that the background mathematics is clear, it’s worth 
making some remarks about the relationship between sequences and series. 
A sequence is an ordered list of terms; a series is the operation of summing 
all the terms of an infinite sequence. What it means for a series to converge 
is for its sequence of partial sums to approach a limit. If, for example, the 
series is a + b + c +…, then its sequence of partial sums is (a, a + b, a + b + c, 
…). If that sequence approaches a finite limit x, then the sequence (and the 
associated series) converges to x. Otherwise, the sequence diverges. 
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There’s a natural way of connecting the mathematics to the meta-
physics. Each of the solutions to the puzzle of conditional convergence of-
fers a different answer as to which sequences of partial sums are relevant for 
determining the weight of a collection. The order-relative analysis says that 
the relevant sequence of partial sums corresponds to the order in which the 
items are weighed. The balance analysis identifies two relevant sequences 
of partial sums, one comprised of all the positively weighted items and the 
other comprised of all the negatively weighted items. And the expansionist 
analysis takes the relevant sequences of partial sums to correspond to the 
weights of the finite subcollections contained inside ever-expanding balls. 
The fact that these different answers are available illustrates how the math-
ematics underdetermines the metaphysics. Finding a solution to the puzzle 
of conditional convergence is a matter of identifying the right metaphysical 
interpretation of the mathematics. 

I’ve now explained how the expansionist analysis works for cases 
involving conditional convergence. But what about cases involving diver-
gence? If some of A’s ω-sequences approach limit x while others approach 
limit y, then the weight of A is undefined. If each of A’s ω-sequences tends 
to ∞ (or −∞), then the weight of A is ∞ (or −∞). Furthermore, while the 
expansionist analysis is motivated by the puzzle of conditional convergence 
(which involves infinitary collections), it generalizes to finite cases as well. 
If A is finite, then every item in A will eventually be contained within any 
sequence of ever-expanding balls, so every ω-sequence will eventually con-
verge to exactly the weight of A. 

Some might wonder why the expansionist analysis appeals to uni-
form expansions from a center. In principle, we could consider a more per-
missive restriction on expansions, such as a convexity or connectedness re-
striction. But it’s plausible that uniformity is the relevant restriction, at least 
in the analysis of weight. If we were to instead adopt a more permissive 
constraint on expansions, then we would be faced with implausible predic-
tions. Consider, for example, Hungry Items. Since there are gruesome se-
quences of spatial expansions where the associated partial sums in this sce-
nario don’t diverge to ∞, adopting a more permissive restriction on expan-
sions would predict that the weight in Hungry Items is undefined rather 
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than ∞. This strikes me as a good reason for rejecting a more permissive 
restriction on expansions for weight. 

Are there other quantities for which non-uniform expansions are 
permissible? I suspect that when dealing with natural quantities, we will 
need to always restrict the analysis to natural expansions. But that’s a spec-
ulation: to figure out the answer, we would need to undertake a more sys-
tematic exploration of the relevant expansionist analyses for other quanti-
ties. If there are other quantities for which it’s appropriate to appeal to more 
permissive restrictions on expansions, though, then it should be easy 
enough to modify the expansionist analysis accordingly. 

 
Isolated Items 
The analysis above assumes that all the items in the collection are located 
within the same space. But what happens when we have isolated spaces?12  

Let’s say two items are isolated from each other if their distance is 
undefined. Imagine, for example, that a multiverse hypothesis is true, 
where there are infinitely many spatiotemporally isolated universes (all of 
which are actual). And consider a finite collection of isolated items: 
 

——— 
Finite Isolation 
——— 
Items:  Two iron balls, a and b, where a has quantity value 1 and is 

located in universe A, and b has quantity value 2 and is in 
universe B. 

 

What’s the total value of the collection comprised of a and b? Well, 
it’s clear the answer ought to be 3. But no ever-expanding sequence of 

 
12 Technically, it doesn’t even make sense to sum weights across spatiotemporally isolated 
universes since there’s no single gravitational field between isolated items. But analogous 
questions arise even when we consider other quantities (such as utility) where such ques-
tions do make sense. For the purposes of this subsection, I’ll frame the discussion more 
neutrally and simply talk about the “values” of the items under consideration (without 
specification of any particular quantity). Afterwards, I’ll return to weight. 
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balls starting in a’s universe will ever reach any point in b’s universe, since 
the universes are spatially isolated. In fact, every ω-sequence starting in A 
will converge to 1, and every ω-sequence starting in B will converge to 2. 

Fortunately, it’s easy to deal with this sort of case. To determine 
the value of a collection that contains some isolated items, we partition 
the collection into a set of equivalence classes, where each equivalence 
class consists of all and only the items that aren’t isolated from each other. 
Put another way, we group together items that inhabit the same space. 
Then we apply the expansionist analysis to each equivalence class, yield-
ing a set of values. After that, we simply add up the values associated with 
each equivalence class to get a total value. In Finite Isolation, we apply the 
expansionist analysis twice—once to the subcollection in universe A, 
yielding a subtotal of 1, and again to the subcollection in universe B, yield-
ing a subtotal of 2—and add up those subtotals, yielding a total of 3. 

What justifies the procedure above? The answer to that question 
involves ideas that will be developed in the next section. But here’s a pre-
view. There are two distinct ways of summing quantities: (1) over a col-
lection of individuals, and (2) over a collection of locations. In some cases, 
such as Infinite Scale, summation over individuals doesn’t yield a definite 
verdict, since different orderings of the terms yield different sums. Yet we 
can still appeal to summation over locations (using the expansionist anal-
ysis) to find an answer. Conversely, in other cases, such as Finite Isolation, 
summation over locations doesn’t yield a definite verdict, since some of 
the items are isolated from each other. Yet we can still appeal to summa-
tion over individuals (using FINITE ADDITIVITY) to find an answer. 

In fact, even when we have an infinite collection of isolated items, 
we can still appeal to summation over the values of the individual items 
to find an answer, so long as the values either generate an absolutely con-
vergent series or diverge to ±∞. But what if the values of a collection of 
isolated items generate a conditionally convergent series? 
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——— 
Infinite Isolation 
——— 
Items:  The exact same collection of items as in Infinite Scale, with 

every item located in a spatiotemporally isolated universe. 
 
My view is that the value in Infinite Isolation is undefined. At least, I see no 
non-arbitrary way of summing the values of the items in this scenario. This 
might elicit the worry that ‘undefined’ is a non-answer. But nearly everyone 
will want to accept that there are undefined values in at least some scenar-
ios. Setting aside isolation cases, we can construct scenarios involving un-
bounded oscillating divergence, such as the series 1 − 2 + 3 − 4 + …. Those 
who reject ‘undefined’ as a possible answer must figure out what to say 
about these sorts of scenarios. And if we accept ‘undefined’ as the right an-
swer in those cases, it’s reasonable to think that it likewise applies in Infinite 
Isolation. 
 
Verdicts about Cases 
Let’s return to the big picture. I’ll now review how the expansionist analysis 
does better than the order-relative and balance analyses in generating plau-
sible predictions. Here are the scenarios that have occurred throughout the 
paper (in the order in which they appeared), alongside the verdicts of the 
expansionist analysis: 
 

Scenario Verdict 
Infinite Scale ~.69 
Clustered Items ∞ 
Emptied Scale 0 
Infinite Balance13 Equilibrium 
Heavy Items ∞ 

 
13 Here I interpret Infinite Balance as involving two collections of weights, one on either side 
of the balance. 
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Hungry Items ∞ 
Finite Isolation 3 
Infinite Isolation Undefined 
 

I’ve already discussed the isolation cases. I’ll briefly walk through the other 
predictions, starting with Infinite Scale. 

Strictly speaking, Infinite Scale is under-described, since the scenario 
didn’t specify the spatial arrangement of the items. But suppose the spatial 
arrangement of items corresponds to the temporal order in which those 
items are placed. Imagine, for example, that the first item is placed all the 
way on the left, the second item to the right of the first, the third item to the 
right of the second, and so forth. Then the expansionist analysis plausibly 
predicts (alongside the order-relative analysis) that the weight of Infinite 
Scale is ~.69. Next, consider Infinite Balance. It’s uncontroversial that the 
weight on each side of the balance is ∞. If we then grant that a balance is in 
equilibrium just in case both sides carry the same amount of weight,14 then 
we reach the result that Infinite Balance is in equilibrium.  
 The counterexamples to the order-relative analysis were Clustered 
Items, in which we arranged the items from Infinite Scale so that the iron 
balls were clustered together, and Emptied Scale, in which we removed all 
the items from Infinite Scale in a different order than they were placed. The 
order-relative analysis predicted that the weight of Clustered Items was ~.69 
(instead of ∞) and that the weight on Emptied Scale would be negative (in-
stead of 0). By contrast, the expansionist analysis plausibly predicts that the 
weight in Clustered Items is ∞ (since sequences of ever-expanding balls will 
generate sequences of ever greater weight) and that the weight in Emptied 
Scale is 0 (since there are no items on the scale when the scale is empty). 
Moreover, whereas the order-relative analysis takes weight to depend on 
what seems to be a mere matter of convention, the expansionist analysis (as 

 
14 Actually, this principle is quite contestable. Consider: in the infinite ethics literature, 
many deny the analogous principle concerning value (so even if worlds A and B each have 
infinite value, it may nevertheless be that A is better than B). Perhaps analogous consider-
ations apply to other quantities as well. 
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we will soon see) appeals to independently motivated connections between 
quantities and locations. 

The counterexamples to the balance analysis were Heavy Items, 
where infinitely many elephants had balloons attached to their backs, and 
Hungry Items, where infinitely many elephants had balloons inside their 
stomachs. The predictions of the balance analysis depend on how we indi-
viduate the items in the scenario. But on the most natural method of indi-
viduation, the balance analysis predicts that the weight in Heavy Items is 0 
while the weight in Hungry Items is ∞. By contrast, the expansionist analysis 
treats these scenarios with parity: in both cases, the weight is ∞ (since in 
both cases, all sequences of ever-expanding balls generate sequences of ever 
greater weight). Moreover, whereas the balance analysis had to give up FI-

NITE ADDITIVITY, the expansionist analysis can retain that principle. 
Although I’ve argued that neither the order-relative nor the balance 

analyses are correct, I think that both still get something fundamentally 
right. The order-relative analysis is fundamentally correct that Riemann’s 
Rearrangement Theorem has surprising metaphysical implications: by 
simply rearranging the items within a collection, we can change the weight 
of that collection. However, the order-relative analysis misidentifies the rel-
evant parameter of rearrangement: it’s spatial distribution, rather than tem-
poral order, that matters. The balance analysis is fundamentally correct in 
rejecting CONTINUITY: just because the weights in a sequence of finite sub-
collections approaches the value x before time t doesn’t mean that the re-
sulting infinite collection at time t weighs x. However, the balance analysis 
is too quick to dismiss the relevance of convergence to limits: it’s conver-
gence over regions of space, rather than intervals of time, that matters for 
weight. The expansionist analysis incorporates these lessons. 

You might still feel uneasy about taking the value of a collection of 
items with respect to a quantity to depend on the spatial arrangement of 
those items. But if you deny any such connections, then you must also ac-
cept some uncomfortable consequences. To elicit this, consider an example 
that involves utility (rather than weight). Imagine two scenarios where Hil-
bert’s Hotel is fully occupied. In the first scenario, the odd-numbered rooms 
are occupied by residents with +1 utility and the even-numbered rooms are 
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occupied by residents with –1 utility. In the second scenario, the composite-
numbered rooms are occupied by residents with +1 utility and the prime-
numbered rooms are occupied by residents with –1 utility. Since the occur-
rence of prime numbers grows increasingly infrequent as we move along 
the natural number line,15 the positive utility is much more densely distrib-
uted in the second scenario. Yet the two scenarios may be thought of as 
mere spatial rearrangements, since every item in one scenario can be 
mapped to a corresponding item in the other scenario. If you think that spa-
tial rearrangements never matter for summing quantities, then you will be 
forced to say that these scenarios involve equal total utilities. That strikes 
me as a terrible cost to incur. 

The expansionist analysis has some surprising consequences. But 
everyone must accept some surprising consequences about infinitary sce-
narios, and I believe this is a consequence that we can get used to, learn to 
live with, and perhaps even come to love. Furthermore—as I’ll discuss 
next—there’s a deeper diagnosis of the connections between quantities and 
locations that will help us to make sense of this consequence. 
 
§4 Quantities and Locations 
In the expansionist analysis, physical space plays the role of the locative cat-
egory: to determine the weight of a collection, we consider ever-expanding 
regions of space (rather than time, spacetime, or something else). Yet noth-
ing in the formalism necessitates an appeal to physical space: in principle, 
we could have instead appealed to ever-expanding temporal intervals, 
ever-expanding light cones, or ever-expanding regions of some other kind. 
In fact, anything with metric structure—the kind of structure associated 
with distances between elements—could (at least for mathematical 

 
15 This follows from the prime number theorem, proved by Hadamard and de la Vallée 
Poussin in 1896. Interestingly, this theorem was also based on work by Riemann (in par-
ticular, the Riemann zeta function). See Weisstein [2022]. 
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purposes) be used for the locative category. Therefore, you might wonder: 
What justifies the connection between weight and space?16 

This section aims to answer that question. By doing so, I’ll also intro-
duce some new lines of inquiry about the metaphysics of quantities and 
locations. At some points, I’ll offer more questions than answers. But I think 
that’s indicative of how much of the metaphysical terrain is underexplored. 
 
Category Mistakes 
Consider an asymmetry: it makes sense to ask how much weight is in a 
given region of space, but it doesn’t make sense to ask how much weight is 
in a given region of time. Contrast 1a with 1b–1d:17 
 
  (1a) How much weight is in this room? 
 # (1b) How much weight is in this hour? 
 # (1c) How much weight is in the red region of color space? 
 # (1d) How much weight is in the interval (0, 1)? 
 
Whereas 1a is a sensible question, 1b−1d are category mistakes:18 weight can 
be instantiated at regions of physical space, but it can’t be instantiated at 
regions of other sorts of spaces. This asymmetry with respect to locations is 
analogous to a more familiar asymmetry with respect to individuals. Only 
certain kinds of entities—namely, material objects—have weight values. 

 
16 The ensuing discussion will assume a classical picture of space and time. One reason is 
merely to simplify the discussion. But another reason is that many of our concepts—in-
cluding WEIGHT—are arguably classical concepts. That is, regardless of the actual meta-
physics of space and time, WEIGHT bears different conceptual relations to SPACE than it does 
to TIME. Now, this raises some interesting questions about conceptual engineering: how 
should we adjust our concept of weight when we move to a relativistic framework? The 
natural options are to (1) appeal to frame-variant regions of space, or (2) appeal to frame-
invariant regions of spacetime. I won’t attempt to settle which of these options is best. 
17 These sentences are all formulated as questions, but other syntactic constructions (such 
as declarative sentences) would work just as well. 
18 1c and 1d are especially odd because they commit an extra category mistake: only con-
crete objects can have weights, but concrete objects don’t occupy regions of color space 
(rather, colors do) or regions of the real line ℝ (rather, numbers do). 
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Other kinds of entities—colors, abstract objects, feelings, etc.—aren’t the 
sorts of things for which it makes sense to ascribe weight values. Consider 
the asymmetry between 2a and 2b−2d: 

 
  (2a) How much does Riemann weigh? 
 # (2b) How much does redness weigh? 
 # (2c) How much does the number 3 weigh? 
 # (2d) How much does love weigh? 

 
Just as weight can be instantiated only by material objects, weight can be 
instantiated only at spatial locations. Even though the formalism for the ex-
pansionist analysis leaves open which locative category has the relevant 
metric structure, the interpretation of the formalism makes sense only if we 
take the locative category to be space. For any quantity, we can ask both 
about its category of individuals (which kinds of things can instantiate the 
quantity?) and its category of locations (which kinds of locations are those at 
which the quantity can be instantiated?). The answer to the latter question 
tells us which kinds of locations are relevant to the expansionist analysis for 
that quantity.19 

Not every quantity has space as its locative category. Contrast 
weight with pain. While it doesn’t make sense to ask how much weight oc-
curred over an interval of time, it does make sense to ask how much pain 
occurred over an interval of time. If one feels pain for a longer duration, 
then more pain is instantiated. This indicates that time is a locative category 
for pain, even though it isn’t for weight. Or contrast weight and number-of-
prime-integers. While it doesn’t make sense to ask how many primes there 
are in a given region of physical space, it does make sense to ask how many 
primes there are in a given interval of the number line. This indicates that 
while space is a locative category for weight, it isn’t for number-of-primes. 

 
19 This point is especially relevant to expansionist theories in the infinite ethics literature. 
A common criticism of these theories is that it’s not clear why spacetime is relevant for 
value. My arguments here point to a response: spacetime is the locative category for value. 
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Now, in one sense, weight values are indexed to times. If we ask how 
much weight is in a given region R (or instantiated by a given collection A), 
then we must specify the time at which we’re evaluating the weight of R (or 
A). Otherwise, there won’t be a determinate answer to the question, since 
the weight of a given region or collection may vary across different times. 
However, the way in which weight is indexed to time is different from the 
way in which weight is indexed to space (and to material objects). As we 
saw above, it doesn’t make sense to sum weight over intervals of time, 
whereas it does make sense to sum weight over regions of space or collec-
tions of individuals. The specification of a time fixes the context of evalua-
tion, rather than the domain of summation. Weight values are specified at 
particular times, but they aren’t summed over temporal intervals. 

It may turn out that some quantities are locationless, meaning they 
lack a locative category. If a quantity Q is locationless, then there are no an-
swers to questions of the form ‘Where is Q instantiated?’ and no true sen-
tences of the form ‘Q is instantiated at R’. As a potential example, consider 
wealth. It’s not obvious that it makes sense to ask how much wealth is in-
stantiated within a given region of space or time (or any other locative cat-
egory). 20  Similarly, it might turn out that some quantities are objectless, 
meaning they lack a category of individuals. As a potential example, con-
sider number-of-prime-integers. While we can ask how many prime inte-
gers there are within a given region of the real line, it’s not obvious that 
number of prime integers is instantiable by any individual entity (unless we 
interpret regions of the real line as themselves individuals). 

If there are locationless quantities, then what happens when they 
generate puzzles of conditional convergence? Well, the expansionist analy-
sis identifies restrictions on which sequences of partial sums are relevant 
for the sum of an infinite series. In particular, the relevant partial sums are 
the values of the finite subcollections inside ever-expanding balls of the rel-
evant locative category. If a quantity is locationless, then there are no such 

 
20 If your linguistic intuitions differ, make sure that you aren’t interpreting such expres-
sions as elliptically asking how much wealth is instantiated by the collection of people 
within a given region of space or at a particular time. 
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restrictions. Therefore, it’s natural to think that for these quantities, all se-
quences of partial sums are relevant. By consequence, when we construct a 
conditional convergence scenario for a locationless quantity, the value of 
the collection will be undefined. 

What exactly is a location, anyway? This is a hard question—I’m op-
timistic about the prospects for a metaphysical analysis, but I don’t have a 
settled answer. But I don’t think we need one for present purposes. The 
connections between quantities and locations that I’ve identified are com-
patible with a range of views about the nature of locations. As examples, 
my arguments are intended to leave open whether objects and locations are 
mutually exclusive categories, whether locations are fundamentally abso-
lute or relational, and how to best develop a formal theory of locations.21 

The methodology I’ve applied to weight can be generalized. If R is a 
region that belongs to the category of locations for Q, then we should be 
able to sensibly ask ‘How much of quantity Q is instantiated within region 
R?’ If A is a collection of individuals that all belong to the category of indi-
viduals for Q, then we should be able to sensibly ask ‘What is the value of 
collection A with respect to quantity Q?’ The answers to such questions pro-
vide evidence as to the target quantity’s category of locations and category 
of individuals. 
 
Metaphysical Principles 
I’ll now turn to some metaphysical principles connecting quantities, loca-
tions, and individuals. My aim is partly to illustrate some of the questions 
that arise when we pursue this line of metaphysical inquiry. But these prin-
ciples will also bear on the puzzle of conditional convergence: the first prin-
ciple will mitigate one of the dialectical burdens of the expansionist analy-
sis, the second principle illustrates how summation over locations behaves 
in systematic ways, and the third principle is a generalization of the initial 
summation principle introduced at the very beginning of this paper. 

 
21 For some work on the nature of locations, see Casati & Varzi [1998], Hawthorne & Sider 
[2002], Parsons [2007], and Kleinschmidt (ed) [2014]. 
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Suppose A is a collection of items and R is a region of space that con-
tains all (and only) those items. Recall that ω is a function that takes as input 
a collection of items and outputs the weight of that collection. Let’s gener-
alize ω so that it can also take as input a region of space (where the output 
would then be the weight contained within that region of space). Here’s a 
plausible principle about how the weights of collections of individuals re-
late to the weights contained within locations: 

 
QUANTIFICATION EQUALITY 
If A is the collection of weighted items in region R, then ω(A) = ω(R).22 

 
Our focus throughout the paper has been on questions about the weights of 
infinitary collections of items. But we could have instead focused on ques-
tions about the weights contained within infinitary regions of space. Let A 
be one of the infinitary collections of items we have considered (such as the 
collection in Infinite Scale) and R be the region of space that contains all and 
only those items. QUANTIFICATION EQUALITY entails that the answers to the 
following questions should be the same: 

 
Q1: What is the weight of A? 
Q2: What is the weight within R? 
 

The equivalence of these questions matters for the puzzle of conditional 
convergence. According to the expansionist analysis, we can answer Q1 by 
finding the limit of the weights of the finite subcollections of A contained 
within ever-expanding regions of space. It’s natural to then ask why regions 
of space are relevant for calculating the weight of a collection of individuals. 
But that question feels less compelling when we shift the focus from Q1 to 
Q2. If we ask how much weight is contained within some region R, it seems 
obvious that the answer can be found by summing the weights contained 

 
22 According to supersubtantivalism, material objects are identical to regions of spacetime. If 
supersubstantivalism is true, then QUANTIFICATION EQUALITY trivially follows. But even if 
supersubstantivalism is false, QUANTIFICATION EQUALITY is plausible. 
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within the subregions of R. But QUANTIFICATION EQUALITY entails that Q1 and 
Q2 will have the same answer. Hence, if it’s permissible to appeal to space 
to answer Q2, it should also be permissible to appeal to space to answer Q1. 

QUANTIFICATION EQUALITY also enables the expansionist analysis to 
avoid a problem that beset the order-relative and balance analyses. Recall 
that both analyses were subject to a problem about how to individuate the 
items within the collection. The problem was illustrated via Hungry Items, 
when we asked whether the elephants and the balloons counted as separate 
items or whether each elephant and the balloon inside of it counted as a 
single item. On the expansionist analysis, however, it doesn’t matter how 
we answer such questions. This is because of QUANTIFICATION EQUALITY. For 
any region of space, there’s some determinate answer as to the amount of 
weight contained within that region, no matter how we individuate the col-
lection of items contained within that region. 

The second metaphysical principle I want to consider concerns sums 
over the weights contained within regions. Suppose we already know the 
weights contained within two regions of space, R1 and R2. What, then, is the 
weight contained within the union of R1 and R2? The following answer is 
plausible: 
 

SUMS OVER REGIONS 
ω(R1 ∪ R2) = ω(R1) + ω(R2) − ω(R1 ∩ R2). 

 
This principle yields the right verdicts across different cases. There are three 
possibilities for how R1 and R2 may be related: (1) R1 and R2 are identical, (2) 
R1 and R2 are disjoint, and (3) R1 and R2 overlap (where the overlap is partial, 
and where this includes cases where one region wholly contains the other). 
Here’s what the principle says for each case: 
 
(1) Identity: The weight in R1 ∪ R2 is the weight contained within ei-

ther region. That is: ω(R1 ∪ R2) = ω(R1) = ω(R2). 
(2) Disjointness: The weight in R1 ∪ R2 is the weight of R1 plus the weight 

of R2. That is: R1 ∩ R2 = ∅, so ω(R1 ∩ R2) = 0, so ω(R1 ∪ R2) 

= ω(R1) + ω(R1). 
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(3) Overlap:  The weight in R1 ∪ R2 is the weight of the disjoint part 
of R1, plus the weight of the disjoint part of R2, plus the 
weight of the intersection of R1 and R2. That is: ω(R1 ∪ R2) 

= ω(R1\R2) + ω(R2\R1) + ω(R1 ∩ R2). 
 
It’s worth comparing SUMS OVER REGIONS to the corresponding principle 
concerning sums over individuals. We’ve already encountered a version of 
the latter principle: it was introduced at the beginning of the paper, under 
the simple label ‘SUM’, and it stated that for any collection of items, the 
weight of the collection equals the sum of the weights of the items within 
that collection. That principle is plausible if we assume that none of the 
items in the collection overlap with each other. But we can also generalize 
that principle so that it applies even when the items overlap. 
  Consider, for example, a statue and the clay that constitutes it, which 
are distinct but overlapping objects. If we’re calculating the weights of ma-
terial objects, then (in most contexts)23 we wouldn’t want to double-count 
the weight of the statue and the weight of the clay. Put another way, the 
weights of overlapping material objects are quantitatively redundant. To 
capture this precisely, we can construct a principle for sums over individu-
als that’s structurally analogous to the principle for sums over regions. 
Whereas our second metaphysical principle ranged over two regions R1 and 
R2, our third metaphysical principle ranges over two individuals a and b: 

 
SUMS OVER INDIVIDUALS 
ω(a, b) = ω(a) + ω(b) − ω(a ∩ b). 

 
An interesting question is how the intersection relation in SUMS OVER INDI-

VIDUALS relates to the intersection relation in SUMS OVER REGIONS. One op-
tion is to hold that they’re the same: for two individuals to intersect just is 
for them to intersect in their spatial locations. Another option is to hold that 

 
23 There may be some unusual contexts where we would want to count the weights of the 
statue and the clay separately: perhaps, for example, in certain metaphysics seminars. But 
in these contexts, we would be deploying a non-standard method for summing weights. 
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they differ: mereological intersection is distinct from spatial intersection. I 
won’t take a stance on this issue. But it’s worth noting that those who favor 
the second option face an explanatory challenge. Given QUANTIFICATION 

EQUALITY, SUMS OVER REGIONS, and SUMS OVER INDIVIDUALS, two individuals 
overlap just in case their spatial regions overlap. Those who postulate two 
overlap relations must explain why these relations systematically coincide. 
 
Generalizing the Puzzle 
To generate a puzzle of conditional convergence, a quantity must be (1) 
summative, meaning that the quantity value of a collection is the sum of the 
quantity values of the individuals within that collection, (2) convergeable, 
meaning that the quantity values can be arbitrarily close to zero,24 and (3) 
polar, meaning that the quantity has both positive and negative values. 
These properties are formally specified below (let ω be a function from an 
individual to its quantity value, ε be a real number, and each vi be a quantity 
value): 
 

SUMMATIVE:  ω(a, b) = ω(a) + ω(b) − ω(a ∩ b) 
CONVERGEABLE: ∀ε > 0, ∃vn(|vn| < ε) 
POLAR:   ∀v1∃v2(v1 + v2 = 0) 

 
None of these conditions expresses a necessary property of all quantities. 
As examples, it’s arguable that (a) volume is summative and convergeable 
but not polar, (b) wealth is summative and polar but not convergeable,25 (c) 
height-above-sea-level is polar and convergeable but not summative, and 
(d) temperature isn’t summative, convergeable, or polar. 

 
24 Convergeability is tricky. In most (maybe all) cases, only a finite set of values can be 
instantiated by the kinds of objects that actually exist. But that’s compatible with thinking 
that there are possible values of the quantity that aren’t instantiated in the actual world. 
For example, even if there’s a minimal weight instantiated by actual objects, there may still 
be smaller possible weights that aren’t instantiated by any actual objects. 
25 This assumes that wealth is measured in a currency with a minimal value: for example, 
the minimal unit for US dollars is 1 cent. If we instead consider an infinitely divisible cur-
rency, such as bitcoin, then wealth may be convergeable. 
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Philosophical work on quantities has focused mostly on what quan-
tities have in common (and what distinguishes them from non-quantitative 
properties). But the differences above illustrate the diversity that exists 
within the domain of quantities. An interesting project would be to identify 
the most important features that differentiate various kinds of quantities 
and to generate a natural taxonomy. 
 
§5 Supertasks 
Many philosophical puzzles concerning infinitary scenarios involve super-
tasks—scenarios where an infinite number of steps are completed within a 
finite amount of time. The goal of this last section is to illustrate how the 
expansionist analysis sheds light on puzzles about supertasks. To start, let’s 
return to a principle that was mentioned earlier: 
 

CONTINUITY 
If a quantity converges to a limit x over time interval [t0, t1), then the 
quantity attains value x at t1. 

 
Hoek [2021] warns that CONTINUITY isn’t a reliable guide to the outcomes of 
supertasks. He says: “We cannot uncritically apply the Continuity Princi-
ple…[T]he answer is different in each case…[E]ach supertask raises its own, 
subject-specific set of questions” (p.4). I think Hoek is right that CONTINUITY 
doesn’t always yield the right results. But I also think that we can system-
atically diagnose when the principle holds and when it doesn’t. The answer 
depends on whether time is a locative category for the quantity under con-
sideration. 
 Any supertask will take place over some interval of time [t0, t1), such 
that the supertask begins at t0 and is complete at t1. To apply the expansion-
ist analysis to a supertask, we need to consider increasingly large temporal 
intervals (tj, tk) such that (1) for all j, tj is identical to or after t0, and (2) for all 
k, tk is before t1. In other words, we appeal to ever-expanding intervals of 
time that approach (but don’t reach) the start and end times of the super-
task. However, before we get to that point, we must first ask whether the 
expansionist analysis is even appropriate for the supertask at hand. To do 
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that, we need to figure out whether the supertask involves summation over 
some quantity, and if so, ask whether time is a locative category for that 
quantity. In what follows, I’ll discuss three supertasks and show how each 
warrants relevantly different analyses.26 
 

——— 
Infinite Flea 
——— 
Items:  A flea jumping around on a continuous line. 
Setup: Each position on the line corresponds to a real number. The flea 

starts at position 0. At 1pm, it jumps 1cm to the right. At 1:30pm, 
it jumps !

$
 cm to the left. At 1:45pm, !

"
	cm to the right. And so forth. 

 
Just as with Infinite Scale, the movements of the flea can be modeled by the 
alternating harmonic series: 1 − !

"
+ !

#
− !

$
+⋯ = 𝑙𝑛(2). Linnebo [2020] sug-

gests that Infinite Flea is merely another case where the result of an infinitary 
scenario depends on the order in which the individual items are evalu-
ated—instead of iron balls and balloons, the relevant items are now left-
jumps and right-jumps. This means that the order-relative analysis en-
dorses CONTINUITY (at least for Infinite Flea). Since we’ve seen that appeals 
to temporal ordering relations can yield implausible results in some infini-
tary scenarios, it’s reasonable to be suspicious of this way of reasoning 
about Infinite Flea. But this suspicion can be assuaged by observing an im-
portant asymmetry between Infinite Scale and Infinite Flea. 

 
26  Another philosophical puzzle is the Pasadena game, introduced by Nover & Hajek 
[2004]. Imagine you’re presented with the following game: a coin is flipped n times, where 
n = the first flip where the coin comes up heads. If n is odd, then you receive 2n/2 dollars. 
If n is even, then you pay 2n/2 dollars. How much should you be willing to pay to play this 
game? If we calculate the expected value for each value of n, then we encounter a familiar 
series: 1 − !

"
+ !

#
− !

$
+ !

%
− !

&
+⋯ =	 𝑙𝑛(2). But Nover & Hajek argue that any order by which 

we sum these expected values is arbitrary, leading them to conclude that the value of the 
Pasadena game is indeterminate. The Pasadena game raises some tricky issues that warrant 
more discussion than the other puzzles discussed in this section. For limits of space, I won’t 
address it in this paper. 
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Think of the quantity in Infinite Flea as distance traveled, where 
jumps to the right are positive distances and jumps to the left are negative 
distances. To elicit the asymmetry between Infinite Scale and Infinite Flea, 
consider the contrast between the following questions: 
 
  (3a) How much distance was traveled in this interval of time? 
 # (3b) How much weight is this interval of time? 
 
Although time isn’t a locative category for weight, it is for distance traveled. 
In other words, it makes sense to sum distance traveled (but not weight) 
over intervals of time. Given this, we ought to expect CONTINUITY to yield 
the right results for Infinite Flea. This is because if we take time to be the 
relevant locative category, then an invocation of the expansionist analysis 
is effectively an invocation of CONTINUITY. Both CONTINUITY and the expan-
sionist analysis appeal to convergence to a limit: it’s just that CONTINUITY 
requires that the limit is defined over intervals of time, whereas the expan-
sionist analysis leaves open which locative category is relevant. For Infinite 
Flea, the question becomes whether the amount of distance traveled via the 
finite subsets of jumps occurring over ever-expanding intervals of time al-
ways approaches some limit x. The answer is ‘yes’: that limit is ln(2).  
 Consequently, the order-relative analysis happens to be right about 
Infinite Flea: the total distance traveled by the flea depends on the order in 
which the flea makes its jumps. But the expansionist analysis gives a deeper 
explanation for why the order-relative analysis works in this case: namely, 
because time is the relevant locative category in this scenario. However, that 
condition may not hold for other supertasks involving other quantities. In 
fact, we will now turn to one such case. 
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——— 
The Ross-Littlewood Paradox 
——— 
Items:  A jar that can hold infinitely many balls, and a countably infinite 

pile of balls, numbered 1, 2, 3, and so forth. 
Setup: At t0, we place balls 1–10 into the jar. Then we remove ball 1. Then 

we add balls 11–20 into the jar. Then we remove ball 2. We repeat 
indefinitely. By time t1, every ball from the original infinite pile 
has been placed in the jar. 

 
How many balls are in the jar once the supertask is complete? If we appeal 
to CONTINUITY, then it seems that we should conclude that the answer is ∞. 
For every time before t1, the number of balls in the jar grows increasingly 
large. If we mathematically represent the number of balls that are added to 
or removed from the jar at each step, we get the series 10 − 1 + 10 − 1 +⋯, 
which clearly diverges to ∞. However, Littlewood [1953] and Ross [1976] 
both argue that the answer is 0. The reason is that every ball is eventually 
removed from the jar. That is, for every ball in the jar, there will be some 
time before t1 when that ball is removed. If one were to say that the number 
of balls at t1 is ∞, we could ask which balls are in the jar at t1. But any ball 
we pick would eventually be out of the jar at some time, so it seems that 
there’s no ball such that it remains in the jar at t1. 
 We can get insight into the Ross-Littlewood paradox by appealing to 
the expansionist analysis. The quantity under consideration is number-of-
balls. Should we expect the value of this quantity at t1 to be the limit value 
of the quantity for the times before t1? Well, we can ask whether time is a 
locative category for number of balls: 
 
 # (4a) How many balls are in this interval of time? 
  (4b) How many balls are in this region of space? 
 
The asymmetry is evidence that time isn’t a locative category for number-
of-balls. Given this, we ought to refrain from appealing to CONTINUITY when 
assessing the Ross-Littlewood Paradox. Now, that’s merely a negative re-
sult: it doesn’t yet settle how many balls are in the jar at t1. But it undermines 
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the main motivation for thinking that the answer is ∞. On the other hand, 
the observation that every ball is eventually removed from the jar remains 
untouched. Given this, I think the most reasonable answer to the Ross-Lit-
tlewood Paradox is 0. 
 Let’s turn now to the last supertask: 
  

———  
Thomson’s Lamp 
——— 
Items:  A lamp. 
Setup: The lamp is turned on at 1:00pm, then off at 1:30, on at 1:45, and 

so on. 

 
What’s the state of the lamp at 2pm? Most philosophers who have thought 
about Thomson’s Lamp argue that the scenario is under-described. I agree; 
it seems to me that the specification of the scenario simply leaves open 
whether the lamp is on or off at 2pm. But set that aside: I want to instead 
make a more general point about how we reason about scenarios like Thom-
son’s Lamp.27 

It’s often thought that Thomson’s Lamp can be modeled by the infi-
nite series 1 − 1 + 1 − 1 +⋯, often known as ‘Grandi’s Series’. But there’s 
an important asymmetry between Thomson’s Lamp and the other scenarios 
we’ve considered: the variable in Thomson’s Lamp—whether the lamp is 
on or off—isn’t a quantity. Consider how Thomson’s Lamp could just as 
well be defined as a scenario where the lamp flips back and forth between 
red light and green light, or as a screen that alternates between displaying 
‘A’ and ‘B’. Given this, it strikes me as inappropriate to model Thomson’s 
Lamp using Grandi’s Series. If we wish to represent a scenario with an in-
finite series, then we should first ensure that the scenario involves modula-
tions of some quantity. Otherwise, there won’t be a meaningful interpreta-
tion of the addition and subtraction operations, and we risk conflating 

 
27 This scenario originates from Thomson [1954], which is also where the term ‘supertask’ 
was first introduced. The idea that the scenario is underspecified is often associated with 
Benacerraf [1962]. 



A PUZZLE ABOUT SUMS 
 
 
 

 

37 

features of the mathematical representation with features of the scenario 
being represented.28 

Granted, there is an obvious quantity that we could focus on in this 
scenario: namely, luminosity. We might interpret the luminosity level as 1 
when the lamp is on and 0 when the lamp is off. Then the question becomes 
whether time is a locative category for luminosity. Does it make sense to 
ask how much luminosity there is over an interval of time? I myself feel 
unsure in this particular case. But let’s conditionalize. If time isn’t a locative 
category for luminosity, then that means that even when we reinterpret 
Thomson’s Lamp as involving modulations in luminosity levels, it’s still in-
appropriate to use Grandi’s Series to model Thomson’s Lamp. On the other 
hand, if it does make sense to sum luminosity over time, then it’s clear that 
Grandi’s Series will be the appropriate mathematical representation for this 
case. And since Grandi’s Series diverges, we might then conclude that the 
luminosity level of Thomson’s Lamp at 2pm is undefined. 

Now, it’s actually possible to resist that conclusion. Throughout this 
paper, I’ve taken for granted the standard definition of the sum of an infi-
nite series, where the sum is the limit of the sequence of partial sums of that 
series. But there are more powerful mathematical methods that assign finite 
numbers even to series that diverge under standard summation. 29  For 
Grandi’s Series, nearly every one of the more sophisticated summation 
methods assign a sum of ½. And that brings us to a whole new philosophi-
cal question about infinite sums: which mathematical method for summa-
tion best captures the metaphysics of physical quantities? 

I think that’s a fascinating question. But it’s a question that will have 
to be reserved for another time. 

 
28 As a cautionary example, consider this passage from Thomson [1954: 6]: “[T]he reading-
lamp has either of two light-values, 0 ('off') and 1 (‘on’). To switch the lamp on is then to 
add 1 to its value and to switch if off is to subtract 1 from its value. Then the question 
whether the lamp is on or off after the infinite number of switchings have been performed 
is a question about the value of the lamp after an infinite number of alternating additions 
and subtractions of 1 to and from its value, i.e. is the question: What is the sum of the 
infinite divergent sequence +1, -1, +1, ...?” 
29 See Hardy [1992]. 
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Conclusion 
The puzzle of conditional convergence may initially seem like a remote cu-
riosity. But the solution to the puzzle is surprisingly consequential. Though 
I’ve focused on weight, the puzzle generalizes to any quantity that’s sum-
mative, convergeable, and polar. And the solution I favor—the expansionist 
analysis—has metaphysical implications well beyond our initial puzzle. 
I’ve explained how it allows us to develop a diagnosis for when CONTINUITY 

yields the right verdicts in a supertask (and when it doesn’t). And although 
I’ve been focused on questions within metaphysics, the ideas I’ve devel-
oped are also applicable to infinite ethics and infinite decision theory. 

To properly solve the puzzle of conditional convergence, we needed 
to explore the general connections between quantities and locations. Only 
then were we in position to fully appreciate the metaphysical significance 
of Riemann’s Rearrangement Theorem. On the picture I’ve developed, 
quantities are indexed to both categories of individuals (namely, the indi-
viduals that can bear values along that quantity) and categories of locations 
(namely, the locations at which that quantity can be instantiated). And sum-
mation over locations and summation over individuals interact in system-
atic ways, as illustrated by QUANTIFICATION EQUALITY, SUMS OVER REGIONS, 
and SUMS OVER INDIVIDUALS. 
 To my knowledge, there has been little prior philosophical investi-
gation into the relationships between quantities and locations. The philo-
sophical literature on quantities tends to focus on the structural features 
that distinguish quantities from other kinds of properties and on the ontol-
ogy of quantities. The philosophical literature on locations tends to focus 
on the formal principles connecting locations to mereology and on the de-
bates between substantivalists and relationalists. Hence, the puzzle of con-
ditional convergence—and the expansionist analysis, in particular—points 
towards a line of metaphysical inquiry that is ripe for exploration. 
 There are many interesting questions that remain open. I’ve focused 
on weight, but we might also ask what the relevant locative categories are 
for other quantities. I’ve focused on metric spaces, but we might also ask 
whether the expansionist analysis can be extended to more general spaces, 
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such as topological spaces. I’ve focused on uniform expansions, but we 
might also ask whether there are quantities for which non-uniform expan-
sions yield the right results. I’ve focused on infinitary regions, but we might 
also generalize the expansionist analysis to cases where infinitely many 
items lie within a finite region. And I’ve assumed that summation is simply 
a matter of the limits of partial sums, but we might ask whether a more 
powerful mathematical method for summation is more metaphysically apt. 
These all strike me as promising lines for future research.†  
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mann’s Rearrangement Theorem and to this philosophical puzzle. I’m also thankful for 
helpful comments from Ben Holguin, Ron Avni, Al Hajek, David Builes, Theron Pummer, 
Christian Tarsney, Teru Thomas, Tomi Francis, Hayden Wilkinson, Timothy Luke William-
son, and Lingzhi Shi, and helpful discussions with Daniel Hoek, Hannes Leitgeb, Alistair 
Issac, Øystein Linnebo, Aidan Lyon, Anya Farrenikova, Kyle Blumberg, Simon Goldstein, 
and Bill Seager. 
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APPENDIX: Riemann’s Rearrangement Theorem 
A sequence is an ordered list of numbers. A series is the operation of sum-
ming of all the terms in a sequence. A series converges =def there exists a real 
number l such that the sequence of partial sums of the series converges to l. 
This is equivalent to saying that a series converges =def for any ε > 0, there 
exists an integer m such that for all n ≥ m, the difference between l and the 
partial sum of the first n terms of the series is less than ε. 

Some series are absolutely convergent, meaning that the order of the 
terms in the series doesn’t make any difference to the sum. Other series are 
conditionally convergent, meaning that the sum of the series depends on the 
order of its terms. More precisely, a series is conditionally convergent =def 
the series converges yet its absolute series (consisting of the absolute values 
of all of its terms) diverges. That is: 

 
Definition: ∑𝑎% conditionally converges =def (∃l : ∑𝑎% = l) and (¬∃l : ∑|𝑎%| = l). 

 
As an example, consider again the alternating harmonic series: 

 
The Alternating Harmonic Series 

1 −
1
2 +

1
3 −

1
4 +

1
5 −

1
6 +⋯ =	-

(−1).

n + 1

&

.'(

= 𝑙𝑛(2) 

 
This series converges to ln(2). But it’s conditionally convergent: if we take 
the absolute values of its terms, then the resultant series |	1	| + |− !

"
	| + |	!

#
	| +

|− !
$
	| + ⋯	 diverges to ∞. Notably, whenever an infinite series is condition-

ally convergent, the series containing all and only its positive terms di-
verges to ∞, and the series containing all and only its negative terms di-
verges to −∞. That fact follows from the definition of ‘conditional conver-
gence’, and will be important in what follows. Next, let’s turn to Riemann’s 
Rearrangement Theorem: 
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Riemann’s Rearrangement Theorem: 
If an infinite series is conditionally convergent, then its terms can be 
rearranged so that the new series converges to an arbitrary number, 
or diverges. 
 

In what follows, I’ll explain how to make the rearranged series sum to an 
arbitrary positive number or diverge to ∞. It will be straightforward to gen-
eralize to the cases involving arbitrary negative numbers and −∞. 

To start, let’s extract from the alternating harmonic series the series 
consisting of all and only its positive terms and the series consisting of all 
and only its negative terms. Note that for both the positive series and the 
negative series, the terms grow arbitrarily close to zero as the series pro-
gresses: 

 
The Positive Series 

1 +
1
3 +

1
5 +

1
7 +⋯ = ∞ 

 
The Negative Series 

−
1
2 −

1
4 −

1
6 −

1
8 −⋯ =	−∞ 

 
Suppose we wish to rearrange the alternating harmonic series so that it con-
verges to an arbitrary positive number l. We start by taking terms from the 
positive terms until the sum of those terms tips above l. Then we take terms 
from the negative series until the sum dips below l. Then we continue the 
procedure, moving to the positive series whenever the sum dips below l, 
then the negative series whenever the sum tips above l, and so on. Since the 
original alternating harmonic series converged, following this procedure 
guarantees that the rearranged series will converge. The result is a rear-
ranged series that contains all and only the terms of the original series, yet 
which converges to l. 

Suppose we wish to rearrange the alternating harmonic series so that 
it diverges to ∞. We start by taking the first term in the negative series. 
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Then, we add terms in the positive series until the resultant sum is greater 
than 1. Next, we add the second term in the negative series. Then, we add 
terms in the positive series until the resultant sum is greater than 2. Since 
the positive series diverges to ∞, it’s guaranteed that our remaining set of 
positive terms will suffice to exceed any finite positive integer, no matter 
how far along we are in the procedure. We repeat this procedure indefi-
nitely. The result is a rearranged series that contains all and only the terms 
in the original alternating harmonic series, yet which diverges to ∞. 
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